Local delivery of the KCa3.1 blocker, TRAM-34, prevents acute angioplasty-induced coronary smooth muscle phenotypic modulation and limits stenosis.

نویسندگان

  • D L Tharp
  • B R Wamhoff
  • H Wulff
  • G Raman
  • A Cheong
  • D K Bowles
چکیده

OBJECTIVE We previously demonstrated that upregulation of intermediate-conductance Ca(2+)-activated K(+) channels (K(Ca)3.1) is necessary for mitogen-induced phenotypic modulation in isolated porcine coronary smooth muscle cells (SMCs). The objective of the present study was to determine the role of K(Ca)3.1 in the regulation of coronary SMC phenotypic modulation in vivo using a swine model of postangioplasty restenosis. METHODS AND RESULTS Balloon angioplasty was performed on coronary arteries of swine using either noncoated or balloons coated with the specific K(Ca)3.1 blocker TRAM-34. Expression of K(Ca)3.1, c-jun, c-fos, repressor element-1 silencing transcription factor (REST), smooth muscle myosin heavy chain (SMMHC), and myocardin was measured using qRT-PCR in isolated medial cells 2 hours and 2 days postangioplasty. K(Ca)3.1, c-jun, and c-fos mRNA levels were increased 2 hours postangioplasty, whereas REST expression decreased. SMMHC expression was unchanged at 2 hours, but decreased 2 days postangioplasty. Use of TRAM-34 coated balloons prevented K(Ca)3.1 upregulation and REST downregulation at 2 hours, SMMHC and myocardin downregulation at 2 days, and attenuated subsequent restenosis 14 and 28 days postangioplasty. Immunohistochemical analysis demonstrated corresponding changes at the protein level. CONCLUSIONS Blockade of K(Ca)3.1 by delivery of TRAM-34 via balloon catheter prevented smooth muscle phenotypic modulation and limited subsequent restenosis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preventing stenosis by local inhibition of KCa3.1: a finger on the phenotypic switch.

The sources of genetic alterations that underlie phenotypic switching of vascular smooth muscle cells (VSMCs) during stenosis have recently been the subject of intense study. It is becoming increasingly clear that transcriptional control of ion channels plays an important role not only in expression of the differentiated phenotype, but also in the development and maintenance of the proliferativ...

متن کامل

Involvement of Ca2+-activated K+ channel 3.1 in hypoxia-induced pulmonary arterial hypertension and therapeutic effects of TRAM-34 in rats

Pulmonary artery hypertension (PAH) is an incurable disease associated with the proliferation of pulmonary artery smooth muscle cells (PASMCs) and vascular remodeling. The present study examined whether TRAM-34, a highly selective blocker of calcium-activated potassium channel 3.1 (Kca3.1), can help prevent such hypertension by reducing proliferation in PASMCs. Rats were exposed to hypoxia (10%...

متن کامل

The Ca2+-Activated K+ Channel KCa3.1 as a Potential New Target for the Prevention of Allograft Vasculopathy

Allograft vasculopathy (AV) remains one of the major challenges to the long-term functioning of solid organ transplants. Although its exact pathogenesis remains unclear, AV is characterized by both fibromuscular proliferation and infiltration of CD4(+) memory T cells. We here tested whether two experimental immunosuppressants targeting K(+) channels might be useful for preventing AV. PAP-1 inhi...

متن کامل

Role of KCa3.1 channels in proliferation and migration of vascular smooth muscle cells by diabetic rat serum.

Proliferation and migration of vascular smooth muscle cells (VSMCs) are important events in the development of diabetic atherosclerosis. Previous studies have suggested that K(Ca)3.1 channels participate in atherosclerosis and coronary artery restenosis. In the present study, we attempted to clarify the roles of K(Ca)3.1 channels in the proliferation and migration of VSMCs using experimental ty...

متن کامل

Blockade of the intermediate-conductance calcium-activated potassium channel as a new therapeutic strategy for restenosis.

BACKGROUND Angioplasty stimulates proliferation and migration of vascular smooth muscle cells (VSMC), leading to neointimal thickening and vascular restenosis. In a rat model of balloon catheter injury (BCI), we investigated whether alterations in expression of Ca2+-activated K+ channels (KCa) contribute to intimal hyperplasia and vascular restenosis. METHODS AND RESULTS Function and expressi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Arteriosclerosis, thrombosis, and vascular biology

دوره 28 6  شماره 

صفحات  -

تاریخ انتشار 2008